
Towards Modeling and Execution of
Collective Adaptive Systems

Vasilios Andrikopoulos1, Antonio Bucchiarone2, Santiago Gómez Sáez1,
Dimka Karastoyanova1, and Claudio Antares Mezzina2

1 IAAS, University of Stuttgart
Universitaetsstr. 38, 70569 Stuttgart, Germany

{andrikopoulos,karastoyanova,gomez-saez}@iaas.uni-stuttgart.de
2 Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy

{bucchiarone,mezzina}@fbk.eu

Abstract. Collective Adaptive Systems comprise large numbers of heterogeneous
entities that can join and leave the system at any time depending on their own objectives.
In the scope of pervasive computing, both physical and virtual entities may exist,
e.g., buses and their passengers using mobile devices, as well as city-wide traffic
coordination systems. In this paper we introduce a novel conceptual framework that
enables Collective Adaptive Systems based on well-founded and widely accepted
paradigms and technologies like service orientation, distributed systems, context-aware
computing and adaptation of composite systems. Toward achieving this goal, we also
present an architecture that underpins the envisioned framework, discuss the current
state of our implementation effort, and we outline the open issues and challenges in the
field.

1 Introduction

Collective systems comprise heterogeneous entities collaborating towards the achievement
of their own objectives, and the overall objective of the collective. Such systems are usually
large scale, typically consisting of both physical and virtual entities distributed both organi-
zationally and geographically. In this sense, collective systems exhibit characteristics of both
service-oriented and pervasive computing. Furthermore, due to the dynamic nature of the
environment they operate in, they have to possess adaptation capabilities.

In our previous work in the ALLOW project, we enabled orchestrations of physical
entities [8, 16] as the model for individual entities in a collective system. A single entity is
modeled using a pervasive flow modeling its functionality, the services it exposes and the
functionality a partner entity needs to implement in order to interact with the physical entity.
Moreover, the pervasive flows are adaptable in terms of abstract tasks/activities, which can
be refined during the execution depending on the goal of the entity. However, this work relies
on a model restricting the capabilities of entities to a single behavioral description in terms
of Adaptive Pervasive Flows (APFs), and ignores the collaborative aspect in their behavior.

For this purpose, in the current work as part of the ALLOW Ensembles project3, we
aim at defining a Collective Adaptive System (CAS) [19], and the underpinning concepts
supporting modeling, execution and adaptation of CAS entities, and their interactions. Toward

3 ALLOW Ensembles: http://www.allow-ensembles.eu



this goal, we use an approach inspired by biological systems. In particular, we propose to
model and manage entities as collections of cells encapsulating their functionality. Entities
collaborate with each other to achieve their objectives in the context of ensembles describing
the interactions among them.

The contributions of this work can therefore be summarized as follows:

1. Starting from a motivating scenario (Section 2), we introduce a CAS framework (Sec-
tion 3) defining a conceptual model and the life cycle of systems realizing this model.

2. We introduce an architecture enabling the modeling, execution and adaptation of CAS
as distributed, large scale, pervasive systems and we discuss its implementation based
on well-established technologies (Section 4).

The paper closes with a summary of related work (Section 5), and concludes with an outline
of research challenges and future work (Section 6).

2 Motivating Scenario

Supporting citizens mobility within the urban environment is a priority for municipalities
worldwide. Although a network of multi-modal transportation systems (e.g., buses, trains,
metro), services (e.g., car sharing, bike sharing, car pooling), and smart technologies (e.g.,
sensors for parking availability, smart traffic lights, integrated transport pass) are necessary
to better manage mobility, they are not sufficient. Citizens must be offered accurate travel
information, where and when such information is needed to take decisions that will make
their journeys more efficient and enjoyable. In order to deliver “smart services” to citizens,
available systems should be interconnected in a synergistic manner constituting a system of
systems. The FlexiBus scenario is a case of such system. The goal is to develop a system
to support the management and operation of FlexiBuses (FlexiBus Management System
(FBMS)), where actors (i.e., passengers, buses, route managers, bus assistance manager etc.)
need to cooperate with each other towards fulfilling both individual and collective goals and
procedures. As shown in Fig. 1, the system must be able to manage different routes at the
same time (e.g. blue and red) set by passengers by allowing pre-booking of pick up points.

More specifically, each Passenger can request a trip to one of the predefined destinations
in the system, asking to start at a certain time and from a preferred pickup point. The system
should manage also special requests from each passenger like traveling with normal or extra
sized luggage, or disability related requirements. Each passenger can pay their trip directly
in the bus (cash, with a credit card or a monthly pass) or through the FlexiBus company
web site. Furthermore, during the route execution, each passenger waiting for a bus can be
notified for problems on a selected route (e.g. bus delays, accidents, etc.) Each Bus Driver is
assigned by the FBMS a precise route to execute, including the list of passengers assigned
to it, and a unique final destination (e.g. Trento city center in Fig. 1). During the route
realization, each flexibus can also accept passengers that have not booked only if there are
available seats. Bus drivers communicate with an assigned Route Manager to ask for the next
pick-up point and to communicate information like passengers check-in. Different routes
are created by a Route Planner that organizes them to satisfy all passenger requirements
(i.e. arrival time and destination) and to optimize bus costs (i.e. shorter distance, less energy
consumptions, etc.). To find the set of possible routes, the Route Planner communicates with
the FlexiBus Manager in order to collect necessary information (i.e. traffic, closed roads,



Fig. 1. The FlexiBus Scenario

events, etc.) and available resources (i.e. available buses), and to generate alternative routes.
A Bus Assistance Service is also available for bus drivers to report problems that occur along
one route and request for advice/specific activities to be performed (e.g. notify police for an
accident, pickup a bus for repair). Finally, a Payment Service is the entity that interfaces with
various payment systems in order to ensure that ticket purchases are handled correctly.

The system needs to deal with the dynamic nature of the scenario, both in terms of
the variability of the actors involved and of their goals, and of the exogenous context
changes, e.g. bus damages, passenger requests cancellations, traffic jams, roads closed due to
accidents, etc. affecting its operation. Moreover, some of the tasks executed by the actors
require customization for different environmental situations, like passenger preferences and
requirements (e.g. payment with cash or credit card, trip together with a friend, etc.).

3 Overall Framework for CAS

In this section we present our framework to model and execute Collective Adaptive Systems
like the FBMS described above.

3.1 Conceptual Model

We model a CAS as a set of entities that can collaborate with each other in order to accomplish
their business objectives and in some cases common objectives, and for that form one or
more ensembles. Moreover, to enable interaction among entities, each entity exposes one or
more cells.

Cells are uniquely identifiable building blocks representing a concrete functionality
in a larger, multi-cellular system. Implementing the functionality may involve interacting
with other cells through pre-defined protocols. Therefore each cell is defined in terms of



Fig. 2. The Trip Booking Cell Flow

its behavior (flow) and protocol, describing the interaction with other cells and exposed
process fragments [15]. For example, the passenger trip booking in the FlexiBus scenario is
performed by a specific functionality of the Route Manager entity and it is an example of a
cell in the FBMS (see Fig. 2). Among the activities that comprise this flow is Payment, which
is marked as an abstract activity, in the sense that it requires another cell, or a composition of
cells, to implement this functionality. Selecting these cells can be done either during design
or run time of the cell at hand.

Cells can be created from each other through differentiation. Cell differentiation is the
process of modifying/adapting the protocol or flow of an existing cell, resulting in a new cell
with more specific functionality. Differentiation can take place either during the instantiation
of the cell, or during its lifetime (i.e. in runtime). Accepting only credit cards as part of
the Payment activity in Fig. 2 is a case of cell differentiation from the generic cell able to
handle different payment options into a cell with more specific functionality. The actual
functionality of the Payment activity can actually be provided by another cell, e.g. by the
Payment Manager/Service.

After instantiation in the CAS cell instances belong to distinct entities and each cell
instance belongs to exactly one entity. An entity is a physical or virtual organizational unit
aggregating a set of cells. Cells can either be unique in an entity, or they can be replicated
by the entity through instantiation as many times as necessary. The Route Manager in the
FlexiBus scenario, for example, is an entity containing the Trip Booking cell (Fig. 2) and
a Route Assignment cell (Fig. 3a) managing the execution of the route. Each entity has a
context in which it operates, expressed as a set of stateful properties representing the status
of the environment of the entity, e.g. PaymentStatus in Fig. 2. The entity context is accessible
and shared by its cells and cells may keep cell specific context. In addition, an entity has a
set of goals, e.g. ensure that the PaymentStatus context property is set to “paid” at the end of
the cell flow execution, that it attempts to fulfill by initiating or participating in one or more
ensembles.

An ensemble is a set of cells from different entities collaborating with each other to
fulfill the objectives of the various entities. Each ensemble is initiated and terminated by one
entity, but more than one entities are expected and allowed to join and leave through the
ensemble’s lifetime. The Route Assignment cell of the Route Manager entity (Fig. 3a) for
example, forms an ensemble with the Route Execution Cell of the Bus Driver entity (Fig. 3b)
to successfully coordinate the two entities in executing a (FlexiBus) route. Note that one
entity may be involved in more than one ensembles simultaneously.



(a) Route Assignment Cell Flow (Route
Manager)

(b) Route Execution Cell Flow (Bus Driver)

Fig. 3. Examples of Cells and Associated Entities

3.2 Lifecycle

The lifecycle of ensembles is depicted in Fig. 4. We distinguish two major phases: design
time and run time. During the design time phase the ensembles of a CAS are modeled
as choreographies and the cells are expressed as Adaptive Pervasive Flows (APFs) [8].
Modeling choreographies implies defining the visible behavior of the participants (i.e. cell
protocols), the sequence of exchanged messages, and the types of the exchanged data. During
the Generation & Refinement step the resulting choreography definition is first transformed
into APF skeletons — one for each participant — which also contain the functionality
required to support the defined interaction protocol (i.e. sending and receiving messages
from partners, data structures for storing the data, etc.). In the subsequent refinement, each
APF is edited so that it is completed to an executable APF. Note that the design time phase of
choreography subsumes the design time for APFs, i.e. participant implementations/processes.
Any kind of adaptation during the design phase of APFs realizes a differentiation of cells.
The possible adaptation actions are inserting, deleting and substituting activities and control
flow connectors in the APF, changing the data dependencies, editing the context model, and
injecting a process fragment that specifies the functionality of an abstract activity.

The deployment step uses the APF skeletons from the previous step, their service in-
terfaces, and deployment information about the binding strategies for each of the services
to be used. After the deployment the choreography can be executed collectively by APF
instances, i.e. the APFs are made available for instantiation by the execution environment.
The instantiation of one of the APFs initiates the choreography, which is the beginning of the
run time phase for the choreography. More than one APF model may be designated as an
initiating one, e.g. the Route ensemble may be initiated by a cell of the bus or by a cell in a
passenger entity. However, if an instance of one APF initiates a choreography, instances of
the other participating APFs can only join the initiated choreography, e.g. if a bus cell has
started the Route ensemble, passengers can only join the initiated choreography following
the predefined rules for passenger check in.

The choreography is completed successfully when the objectives of the entities partici-
pating in the ensemble are achieved through executing all APFs in it successfully, or even
if some of the cells/APFs have abandoned the ensemble, e.g. if a passenger leaves the bus
and moves to another transportation vehicle due to changes in their objectives. For the latter



Ensemble/Choreography 

Cells/APF

Cell/APF Instances

Design Time

Run Time

Deployment & 
Instantiation

Generation & 
Refinement

Fig. 4. Lifecycle of Ensembles

case, fault handling and/or adaptation steps may need to be performed. A choreography
is completed abnormally if all participant APFs have been terminated. In this case either
the choreography has reached a state for which a termination has been predefined (e.g. the
bus breaks down and there is no available one to substitute it, therefore passengers have to
join another ensemble, i.e. wait for the next FlexiBus or use an alternative transportation
means), or none of the fault handling and/or adaptation steps have been able to complete the
choreography successfully. The runtime phase subsumes monitoring and adaptation of chore-
ographies, as well as the runtime and monitoring and adaptation phases of APFs. Adaptation
of choreographies is done through adaptation of the visible behavior of the cells and through
a change of the interaction protocol among them, including message exchange sequence and
message types. Adaptation of an APF may not entail adaptation of the choreography.

4 Realization

4.1 Architecture

The architecture for the modeling and execution of CAS comprises two major component
groups (see Fig. 5) which cover the phases of the CAS lifecycle discussed in Section 3.2.
More specifically, the Modeling Tool comprises three major components: a Choreography
Modeler to create choreography models for the ensembles, a Transformer to generate the
APF skeletons that can be completed to executable processes by the participant organizations
using the APF Editor component, and an APF Editor (also called process editor) to allow the
visualization and modification of APF models.

The Runtime Environment enacts the choreographies. In particular this means that the
resulting executable APF models are deployed on one or more Execution Engines and can be
instantiated at any time. The Deployment & Instantiation steps are implementation-specific
for each Execution Engine. In order to support the execution of APFs containing abstract
activities, the Execution Engine has to be able to start the execution of incomplete processes,



Modeling tool

Runtime environment

ESB

Adaptation Manager

Planner Translator

Domain
Builder

Entity 
Management 

System

Monitoring 
Information

Choreography Processes

Execution Engine

Domain
Models

Context

Fig. 5. Architecture overview

allowing the injection of additional activities into APFs. Furthermore, the Execution Engine
has to provide fault handling capabilities, both for pre-defined fault and compensation
handlers in the APF models, and for failures in the Runtime Environment like service failures
and unavailability of other components in the Environment. The Execution Engine has to
support user-defined ad hoc control flow changes (e.g. deletion, insertion, substitution of
one more activities in the flow). Some of these adaptations require one or more planning
steps, for example, in order to resolve abstract activities into concrete ones and to handle the
reaction to not pre-modeled faults occurring during the execution of the APF. The component
providing this planning functionality is the Adaptation Manager.

Once the Adaptation Manager is notified about an execution problem, a change in the
context or goals of cells, it decides on the adaptation strategy to be used (horizontal adaptation,
vertical adaptation, other adaptation strategies etc. [9]). The choice of the adaptation strategy
determines the adaptation goal, which is passed to the Domain Builder together with the
information about the current context. The Domain Builder builds an initial version of the
adaptation problem consisting of a context model, a set of available annotated fragments,
current context configuration (i.e. the state of context properties), and a set of goal context
configurations. The Domain Builder extracts all necessary specification from a repository of
Domain Models. Taking into account the current context and adaptation goals, the Domain
Builder simplifies the context model by pruning all unreachable configurations and removes
all services that are useless for the specified goal. With this optimization the size of the
planning domain is significantly reduced. The Translator component translates an adaptation
problem into a planning problem, which is resolved by the Planner. It is also responsible for
transforming the results of the Planner into executable APF fragments. Finally, the resulting
APF fragment expressing the actions necessary for realizing the adaptation strategy is sent to
the Execution Engine, that integrates it into the APF instance.

The Entity Management System (EMS) deals with all aspects of entity management:
persistence storage and management of APF models and associated entities, access control
of APF models and instances, and context provisioning and management. When the EMS
creates a new entity, it deploys the entity APFs to the execution engine, adds corresponding
context properties to the entity context model, and puts all the entity-related specifications



(such as fragments models and the context property diagrams provided by the entity) into the
Domain Models storage. When the entity “exits” the CAS, inverse actions are performed. The
EMS is responsible for storing the system context (i.e. a set of context properties of all active
entities) and constantly synchronizes its current configuration with the application domain by
monitoring the environment of the entity. Note that the system context is a simplified view of
the application domain. The EMS allows the Adaptation Manager to access the APF models
and instances needed for the planning step. Context information is used by the Execution
Engine for different purposes: as part of the execution of the APFs, as a trigger for adaptation,
and as a configuration parameter for the planning step.

All components (Execution Engine, EMS, Adaptation Manager) should be provided as
services and communicate through an Enterprise Service Bus (ESB) solution to facilitate
their integration. Given the fact that multiple organizational domains may use the Runtime
Environment, it is necessary to offer multi-tenancy capabilities out of the box for all compo-
nents in the Environment. Furthermore, the Runtime Environment may contain more than
one instances of its components, distributed across on-premises and off-premises Cloud
infrastructures, for scalability purposes. This has to be taken into consideration during the
integration of the individual components.

4.2 Implementation

In the following we present the status of the implementation of the presented architecture.
In particular, we have developed the modeling tool as an Eclipse Graphical Editor. For
purposes of expressing choreographies we use the BPEL4Chor language [13] (which is
an extension of the WS-BPEL language), and WS-BPEL [25] for implementing the APFs.
The user can model the participants in the choreography/ensemble as separate entities and
define the interaction among them, including the abstract data types used and the sequence
of exchanged messages. BPEL4Chor code is automatically generated by the tool for the
choreography, for the list of participants in the choreography and the data exchanged among
them. The components implementing the transformation from choreography definition in
BPEL4Chor to BPEL process skeletons for each participant and their service interfaces in
WSDL, presented in [32], are part of the tool as well as the Eclipse perspective for modeling
and editing BPEL processes. The BPEL modeling perspective is an extension of the BPEL
Eclipse designer [28]. It is used to view the BPEL skeletons and include additional process
elements in order to define the participants implementation of the choreography role (e.g. bus,
passenger, route manager processes). This manual refinement step is simplified by allowing
to use predefined process fragments, which are available in the tool catalogue and stored and
managed in the process fragment library Fragmento [27].

Additionally, we have extended the tool with a monitoring component for processes, so
that during the execution of the APF instances the user can view their status and also adapt
manually the instance that is currently being monitored. For this purpose the modeling tool
uses run time information from the execution engine provided via its monitoring component.
The interaction between the modeling tool, monitoring component and execution engine
supports also the runtime adaptation of APFs processes using mechanisms like control flow
change (inserting, deleting or substituting process activities and control connectors), changes
in the data used in the process instance, and triggering re-execution of some of the already
executed activities through [29].



The additional tasks of the Adaptation Manager component are realized by ASTRO-
CAptEvo4 [26], a comprehensive framework for defining highly adaptable service-based
systems (SBSs) and supporting their context-aware execution. It can deal with two different
adaptation needs: the need to refine an abstract activity within a process instance (i.e. vertical
adaptation), and the need to resolve the violation of a context precondition of an activity that
has to be executed (i.e. horizontal adaptation). In the second case, the aim of adaptation is to
solve the violation by bringing the system to a situation where the process execution can be
resumed. Both adaptation mechanisms rely on sophisticated AI planning techniques for the
automated composition of services [5]. Moreover, it is able to execute complex adaptation
strategies that are realized through combining a few adaptation mechanisms and executing
them in a precise order, enabling support for addressing complex adaptation problems that
cannot be resolved by a single adaptation mechanism [10].

The execution engine for APFs, i.e. the executable processes of the participants in the
choreography, is an extended Apache ODE Engine5, an open source implementation of
BPEL. We have extended the engine to support the integration with the modeling tool for
the purposes of monitoring, the adaptation mechanisms mentioned above as well as with
the ability to stop, suspend and resume a process instance in the engine from the modeling
tool [28]. For the ESB component of the architecture we use the ESBMT multi-tenant aware
ESB solution, as presented in [30, 31]. ESBMT enhances the Apache ServiceMix solution6

with multi-tenant communication support within service endpoints deployed in the ESB, and
multi-tenant aware dynamic endpoint deployment and management capabilities.

The Entity Management System manages all active entities within a CAS. Currently both
the entity management and context management parts of the EMS are under construction.
Our CAS modeling tool is also missing features supporting modeling of context in the
choreographies and APFs. Adaptation mechanisms performing a reaction to context change
or driven by context information are also not yet designed and implemented. Our execution
engine prototype does not currently support the injection of fragments directly into the
process instance; note that this is possible for the design time phase. This is due to the fact
that the previously presented implementation [26] of this mechanism needs to be integrated
in the current implementation. Currently we are also working towards implementation of
multi-tenancy of the APF execution engine.

5 Related Work

Collective or adaptive aspects of complex systems have been studied in various domains.
For example in Swarm Intelligence entities are essentially homogeneous and are able to
adapt their behavior considering only local knowledge [11, 22]. In existing systems from
Autonomic computing the entity types are typically limited and the adaptation is guided by
predefined policies with the objective to optimize the system rather than evolve it [1, 7, 23].
In Service-based systems utilized on Internet of Things, entities are hidden behind the basic
abstraction of services, which are designed independently by different service providers,
and approaches to automatically compose services to achieve a predefined goal like user

4 http://www.astroproject.org/captevo
5 Apache ODE: http://ode.apache.org/
6 Apache ServiceMix: http://servicemix.apache.org



specific [18] and/or business goals [24] are the focus. Multi-agent based systems concentrate
on defining the rules (norms) for regulating the collective work of different agents [12, 21].
Most of the results obtained in these domains are tailored to solve problems specific for the
domain at hand using a specific language or model but do not present a generic solution for
all aspects of collective adaptive systems.

Different choreography modeling approaches have been proposed in [3, 14, 17, 20]. Two
key approaches followed when modeling choreographies are interaction and interconnection
modeling [3]. The former has interaction activities supporting atomic interactions between
participants, while the latter interconnects the communication activities of each participant in
a choreography. WS-CDL [17] is a choreography language following the interaction modeling
approach. It exhibits however a strong dependency between semantic and syntactic aspects,
specifically in the definition requirement of message exchange formats between participants
at design time [4], lacks support for describing choreographies with an unknown participants
number [20], and does not define guidelines for mapping between the choreography modeling
language and existing orchestration languages, such as WS-BPEL [25]. The Savara7 project
for example is based on behavior specification and choreography specification using WS-
CDL, and behavior simulation, and generation and implementation of business processes
using BPEL and Web services. Despite the similarities in some of the used technologies with
our approach however, and due to the use of the interaction modeling approach requiring
explicit specifications of choreographies and orchestrations, the Savara approach does not
allow for dynamically joining and leaving the choreography.

An example of an interconnection modeling approach is the CHOReOS Integrated De-
velopment and Runtime Environment which focuses on the implementation and enactment
of ultra large scale choreographies of services8. By exploiting the notion of models and mod-
els@runtime [6] techniques, the CHOReOS Environment provides support for a top-down
and cross-cutting choreographies incorporating the design, enactment, and adaptation of
services during runtime. The adaptation requirements addressed in the CHOReOS Environ-
ment (react to participants unavailability, or when the SLA is not accomplished) are only a
subset of the requirements on ensembles, where context changes in pervasive environments,
structural changes in the ensemble, or cells leaving the ensemble, adapting to utility fluc-
tuations etc. are of interest. In the scope of the Open Knowledge European project9, the
interconnection modeling approach is supported by using the Multiagent Protocol (MAP)
Web service choreography language for specifying the interaction between peers, which
are connected to the services participating in the choreography. Services must be deployed
prior to the choreography enactment and the MAP language does not focus on adaptation
features. These features present clear deficits with respect to modeling CAS adaptation and
the runtime reaction to changes in a service-oriented pervasive environment.

The interaction modeling approach called BPELgold [20] is based on BPEL4Chor [14].
The coordination logic of participants in choreographies is enabled by an ESB. Both
BPEL4Chor and BPELgold decouple the choreography specification from communication spe-
cific details, allowing for dynamic ensemble adaptation during runtime. However, while these
approaches possess the required flexibility for defining ensembles no execution environment
is currently available for them.

7 http://www.jboss.org/savara
8 CHOReOS: Large Scale Choreographies for the Future Internet: http://www.choreos.eu/
9 Open Knowledge: http://www.openk.org/



6 Conclusion and Future Work

Collective Adaptive Systems (CAS) are characterized by heterogeneous entities that can join
and leave the system at any time towards fulfilling their own objectives. These entities may
be physical or virtual, and interact with each other as part of the collective. CAS systems are
naturally distributed, both in terms of the participating entities (i.e. geographical location
and/or organizational affiliation), and the required infrastructure to support them. In order
to enable CAS exhibiting these properties, in this work we introduce a conceptual model
inspired by biological systems which comprises collections of cells (functional building
blocks) organized into entities (organizational units), interacting with each other in ensembles
(collaborations between cells).

In order to discuss the realization of this model, we map its elements to existing tech-
nologies and present a lifecycle for the ensembles based on them. We also introduce an
architecture for a CAS that ensures complete coverage of the lifecycle, and present the current
status of its implementation. Future work focuses on creating an improved context model
and provisioning techniques for entities participating in ensembles in different application
domains, e.g. in eScience [2], and managing the adaptation of choreographies. Consequently,
the components of the prototype implementation discussed in the previous sections have to
be extended, and all the remaining components integrated. In addition, different distribution
and deployment options for the Runtime Environment will be investigated in order to identify
the optimal solution for different CAS.

Acknowledgment

This work is partially funded by the FP7 EU-FET project 600792 ALLOW Ensembles.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General Model for Self-
Adaptive Systems. In: WETICE. pp. 48–53 (2012)

2. Andrikopoulos, V., Gómez Sáez, S., Karastoyanova, D., Weiß, A.: Towards Collaborative, Dynamic
& Complex Systems. In: Proceedings of SOCA 2013 (to appear). IEEE (December 2013)

3. Barker, A., Walton, C.D., Robertson, D.: Choreographing Web Services. In: IEEE Transactions
On Services Computing. vol. 2, pp. 152–166. IEEE (2009)

4. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Services Choreography Descrip-
tion Language (WS-CDL). BPTrends March (2005), http://www.bptrends.com/

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via planning in
asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

6. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42, 22–27 (2009)
7. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A Conceptual Framework

for Adaptation. In: FASE. pp. 240–254 (2012)
8. Bucchiarone, A., Lafuente, A.L., Marconi, A., Pistore, M.: A formalisation of Adaptable Pervasive

Flows. In: Proceedings of WS-FM’09 (2009)
9. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of Fragment-Based and

Context-Aware Business Processes. In: Proceedings of ICWS 2012. pp. 33–41 (2012)
10. Bucchiarone, A., Marconi, A., Pistore, M., Traveso, P., Bertoli, P., Kazhamiakin, R.: Domain

Objects for Continuous Context-Aware Adaptation of Service-based Systems. In: Proceedings of
ICWS 2013 (to appear). pp. 571–578 (2013)



11. C. Pinciroli et al.: ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics.
In: Proceedings of IROS. pp. 5027–5034 (2011)

12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collaboration
patterns for autonomic service ensembles. In: CTS. pp. 508–515 (2011)

13. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service Choreographies
Using BPMN and BPEL4Chor. In: Proceedings of CAiSE. pp. 79–93 (2008)

14. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for Modeling
Choreographies. In: Proceedings of ICWS 2007 (2007)

15. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: OTM Conferences (1). pp. 398–405
(2009)

16. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows - An Emerging
Technology for Pervasive Adaptation. In: Proceedings of PerAda’08. IEEE (2008)

17. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web Services
Choreography Description Language Version 1.0 (November 2005)

18. Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H.: Modelling and Automated Composition of
User-Centric Services. In: OTM Conferences (1). pp. 291–308 (2010)

19. Kernbach, S., Schmickl, T., Timmis, J.: Collective Adaptive Systems: Challenges Beyond Evolv-
ability. ACM Computing Research Repository (CoRR) (August 2011)

20. Kopp, O., Engler, L., van Lessen, T., Leymann, F., Nitzsche, J.: Interaction Choreography Models
in BPEL: Choreographies on the Enterprise Service Bus. In: S-BPM ONE 2010 (2011)

21. Lavinal, E., Desprats, T., Raynaud, Y.: A generic multi-agent conceptual framework towards
self-management. In: NOMS. pp. 394–403 (2006)

22. Levi, P., Kernbach, S.: Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution.
Springer Verlag (2010)

23. Lewis, P., Platzner, M., Yao, X.: An outlook for self-awareness in computing systems. Awareness
Magazine (2012)

24. Marconi, A., Pistore, M., Traverso, P.: Automated Composition of Web Services: the ASTRO
Approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

25. OASIS: Web Services Business Process Execution Language Version 2.0 (April 2007)
26. Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: ASTRO-CAptEvo: Dynamic

Context-Aware Adaptation for Service-Based Systems. In: Proceedings of SERVICES. pp. 385–
392 (2012)

27. Schumm, D., Karastoyanova, D., Leymann, F., Strauch, S.: Fragmento: Advanced Process Frag-
ment Library. In: Proceedings of ISD’10. pp. 659–670. Springer (2010)

28. Sonntag, M., Hahn, M., Karastoyanova, D.: Mayflower - Explorative Modeling of Scientific
Workflows with BPEL. In: Proceedings of the Demo Track of BPM 2012. pp. 1–5. CEUR
Workshop Proceedings (2012)

29. Sonntag, M., Karastoyanova, D.: Ad hoc Iteration and Re-execution of Activities in Workflows.
International Journal On Advances in Software 5(1 & 2), 91–109 (2012)

30. Strauch, S., Andrikopoulos, V., Leymann, F., Muhler, D.: ESBMT: Enabling Multi-Tenancy in
Enterprise Service Buses. In: Proceedings of CloudCom’12. pp. 456–463. IEEE Computer Society
Press (December 2012)

31. Strauch, S., Andrikopoulos, V., Sáez, S.G., Leymann, F., Muhler, D.: Enabling Tenant-Aware
Administration and Management for JBI Environments. In: Proceedings of SOCA’12. pp. 206–213.
IEEE Computer Society Conference Publishing Services (December 2012)

32. Weiß A., Andrikopoulos, V., Gómez Sáez, S., Karastoyanova, D., Vukojevic-Haupt, K.: Modeling
Choreographies using the BPEL4Chor Designer: an Evaluation Based on Case Studies. Tech. Rep.
2013/03, IAAS, University of Stuttgart (2013)


